Overview and Data Exploration | - Overview: Introduce and distinguish AI, Machine Learning (ML), Deep Learning (DL), and Data Science (DS) - Real world ML workflow from experiment to deployment -> ML engineer ? -> Skill? - Data Wrangling and Cleaning: + Process raw data (missing, duplicate) - Database, SQL |
ML 101 | - Introduce ML (supervised | unsupervised learning) - Feature Engineering - Fundamental Algorithm: + Linear Regression + Logistic Regression + KNN - Linear Regression (enhance with normalization L1, L2) (just introduce) - Split data method (K-Fold, Leave-One-Out, Strastified, Time-Series...) |
Algorithm | - Decesion Tree -> Expansion: Bagging | Boosting | Stacking -> Random Forrest - Naive Bayes |
Evaluation & Hyperparam tunning | - Basic idea about Boosting and Extra Trees, XGBoost... - How to evaluation model - Hyperparam tunning method |
Big Data | - Map Reduce basic concept - Data warehouse -> Datalake -> Data lakehouse |
Review final project + ML engineer | - Review final project - ETL/ELT - Workflow orchestration: Airflow - Introduce about cloud platforms: Azure, AWS |
Requirements
Benefits
Thời gian làm việc:Part time
Số lượng:10
Địa Điểm:In office
Cấp bậc:Intern
Ngày hết hạn:04-09-2025
Mức lương:Thỏa thuận
Cấp độ:Intern
Số lượng:5
Ngày hết hạn:14-05-2025
Intern
ReactJS
Kiến tạo giá trị Khai phóng sự nghiệp
Đơn ứng tuyển của bạn đã được gửi đi, chúng tôi sẽ liên hệ sớm.